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Abstract

Deep Neural Networks (DNNs) are frequently
used in NLP for various tasks, such as clas-
sification and machine translation. However,
recent results show that they are prone to ad-
versarial attacks. Typically, defense strategies
against the attacks either augment the train-
ing dataset, modify the word embeddings or
use model-dependent algorithms. Such tech-
niques suffer from transferability issues and
heavy computations. In this study, we propose
a computationally efficient, model and attack
agnostic algorithm called Word-Level Adver-
sarial Defense Layer (WLADL), which has
been evaluated on text classification tasks with
different architectures. For comparison, we
applied the vanilla adversarial training (VAT)
strategy (augmenting the dataset with success-
ful adversarial examples), and the Synonym
Encoding Method (SEM) to generate new word
embeddings. We evaluate the defense strategies
through their clean test results, alterations in the
accuracies and adversarial query counts com-
pared to non-defended models when attacked.
Our experiments demonstrate that, when com-
pared with VAT and SEM, WLADL shows
competitive performance, while being a trans-
ferable algorithm that does not require any pre-
computations.

1 Introduction

In recent years, deep learning models gained signif-
icant popularity because of their remarkable perfor-
mances in numerous tasks. However, these models
have shown to be vulnerable against adversarial
perturbations: minimal changes that are unperceiv-
able by a human observer. Such perturbations fool
the models to make false predictions (Goodfellow
et al., 2015). In the NLP domain, existing adversar-
ial attacks can be roughly divided in four categories:
Character-level attacks consist of intentional typos
(Ebrahimi et al., 2018; Gao et al., 2018), word-level
attacks comprise low-frequency synonym replace-
ment (Samanta and Mehta, 2017) for classification

or antonym replacement for machine translation
tasks (Cheng et al., 2019), sentence-level attacks
change word positions (Zhang et al., 2019) and
multi-level attacks add words to sentences for gra-
dient disturbance (Song et al., 2021). In this study,
we focus on examining defense strategies on word-
level adversarial attacks for document classification
tasks. Examples for word-level adversarial attacks
can be seen in Table 1.

Several problems arise while applying VAT
(Goodfellow et al., 2015) or more advanced de-
fense algorithms (Wang et al., 2021b,a). To begin
with, the VAT pipeline consists of training a clean
model, attacking it using a designated attack strat-
egy, selecting successful adversarial examples and
retraining the model by augmenting the training
dataset with the successful adversarial examples. It
is necessary to select a candidate model and an at-
tack to complete the pipeline; one can suggest that
the selected attack might prove successful to use
for one model but completely fail for another one.
Also, training the model with the adversarial exam-
ples generated through a single attack might not
improve performance for a different type of attack.
Furthermore, complex defense algorithms such as
the SEM (Wang et al., 2021b) also suffer from
transferability and computational burden. SEM
creates new word embeddings that group semanti-
cally similar words together, to avoid adversarial
attacks that substitute words with rarely used syn-
onyms. With SEM, BERT-like models are not able
to fully utilize contextualized embeddings (Devlin
et al., 2019).

We therefore introduce a modular, attack and
model agnostic defense strategy: the Word-level
Adversarial Defense Layer (WLADL) which works
similar to a dropout layer. Compared to other de-
fense strategies, WLADL does not require any pre-
computations, and is a training-time algorithm that
can be easily applied to various types of model
architectures.



Table 1: Adversarial examples and their predictive outputs for all datasets generated with Bidirectional LSTM
attacked by PWWS

Dataset Original Text Adversarial Example Ground Truth Predicted Output Perturbed Output

IMDb

A very comical but down to earth look into the
behind the scene workings of an Australian bowling club.
The way they deal with various problems such as
takeovers, memberships and general running of the club,
not to mention the car parking dilemma was well scripted.

A very comical but down to earth look into the
behind the scene workings of an Australian bowling club.
The way they deal with various problems such as
takeovers, memberships and general running of the club,
not to mention the car parking dilemma was swell scripted.

Positive Positive (98%) Negative (80%)

Yahoo! Answers
What’s the best way to fight a cold?
Take zinc or try Zycam
homopathic remedy at any drug store or grocery.

What’s the best way to fight a cold?
Take zinc or try Zycam
homopathic amend at any drug store or grocery.

Health Health (46%) Education (62%)

AG News
Sneaky Credit Card Tactics.
Keep an eye on your credit card issuers.
They may be about to raise your rates.

Sneaky Credit Card Tactics.
Keep an eye on your credit card issuers.
They may be about to kindle your rates.

Business Business (78%) Science/Technology (83%)

2 Models and Methods

To assess the performance of WLADL, we used the
following baseline adversarial defense strategies,
models and datasets from the literature.

2.1 Classifiers and Datasets

We selected three datasets and classifiers which
are widely used as benchmarks in adversarial NLP
literature. The primary focus for the model de-
cisions was testing performance on different ar-
chitectural designs. Therefore, we chose Bidirec-
tional LSTM (BiLSTM) (recurrent), Convolu-
tional Neural Networks (CNN) (convolutional)
and fine-tuned BERT (transformer) (Devlin et al.,
2019) as our base classifiers. For the datasets,
we focused on increased variety in the document
length, dataset size and number of classes. The
three datasets that satisfy these requirements are
IMDb (Maas et al., 2011), AG News (Zhang et al.,
2015) and Yahoo! Answers (Zhang et al., 2015).

2.2 Baseline Defense Strategies

We chose VAT as the initial baseline defense al-
gorithm and generated examples using a BiLSTM
model trained on each of the clean datasets. Then,
we attacked the model using Probability Weighted
Word Saliency (Ren et al., 2019) (PWWS), generat-
ing approximately 10% adversarial samples for the
IMDb and AG News training sets and as many ex-
amples as possible in 24 hours for Yahoo! Answers,
to be computationally comparable to WLADL.

Another baseline we selected is SEM (Wang
et al., 2021b), to compare WLADL with a strat-
egy that modifies the word embeddings. It reduces
an existing embedding matrix by mapping similar
words to the most used one. We used Euclidean
distance of the word embeddings for measuring
similarity. The hyperparameters are the minimum
euclidean distance (δ) to be seen as synonyms and
the maximal number of synonyms (k) which can
be mapped to the same word. Looking at the per-

formance of our datasets and following the authors
δ = 3.1 and k = 10 were selected. We generated
the new embedding matrices for every dataset using
the most frequent 50k tokens.

2.3 Attacks

In literature, adversarial attacks are separated into
white-box and black-box attacks. Black-box at-
tacks do not make use of information regarding
model parameters, whereas white-box attacks can
also utilize them to perturb samples (Garg and
Ramakrishnan, 2020). For this study, we opted
for black-box attacks. The objective for a black-
box word-level adversarial attack is as follows:
Given a tokenized input, Xi = [xi1, x

i
2, ..., x

i
n], a

trained classifier C, and an output class yi, an ad-
versary searches for the minimally necessary per-
turbations of the tokens xij yielding Xadv

i , such
that C(Xi) = yi while C(Xadv

i ) ̸= yi (Garg
and Ramakrishnan, 2020; Alzantot et al., 2018).
Adversaries can employ external sources such as
language-models, a WordNet (Fellbaum, 1998) the-
saurus and embeddings such as GloVe (Pennington
et al., 2014) to execute the attacks, but they have to
respect certain constraints. Examples of such con-
straints are: the maximal number of queries, max-
imal number of perturbations in a document and
grammatical correctness (Ren et al., 2019; Garg
and Ramakrishnan, 2020; Alzantot et al., 2018).
For the attacks that utilize external resources we
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Figure 1: Experimental Pipeline



Algorithm 1: Word-Level Adversarial De-
fense Layer (WLADL)
Inputs: X = [x1, x2, ..., xn]: Tokenized

input document
TH: WordNet (Fellbaum, 1998) Thesaurus
p1: Synonym Altering Probability
p2: Masking Probability
Output: X̂: Altered input document

1 for i← 1 to n do
2 mask ∼ Bernoulli(p2)
3 if mask = 0 then
4 synonym ∼ Bernoulli(p1)
5 if synonym = 1 then
6 synonyms← TH.get[xi]
7 if len(synonyms) > 0 then
8 index ∼ Uniform(1,

len(synonyms))
9 x̂i ← synonyms[index]

10 else
11 x̂i ← xi

12 else
13 x̂i ← xi

14 else
15 x̂i ← "" ▷ empty string

16 X̂ ← [x̂1, x̂2, ..., x̂n]

17 return X̂

selected PWWS (Ren et al., 2019) and Genetic
Algorithm (GA) (Alzantot et al., 2018), while to
represent the ones that use language models, we
chose BAE-R (Garg and Ramakrishnan, 2020). For
detailed explanations about the attacks, we refer
the readers to the original papers.

2.4 Experimental Pipeline

The candidate models were trained by applying
either one of the proposed defense strategies, or
trained cleanly, i.e. without any defense. Since
finding an adversarial example is a computationally
heavy operation, we followed the convention in the
literature (Wang et al., 2021c,a,b) and attacked the
first 200 samples of each test set. We calculated the
classification metrics for the selected samples, both
clean and attacked, with respect to every model and
defense strategy. Overall, the pipeline we followed
for the experiments can be seen in Figure 1.

2.5 Word-Level Adversarial Defense Layer
(WLADL)

WLADL is a training-time algorithm that expects
tokenized documents as input and outputs random
documents generated by either masking or alter-
ing a token with its synonym using the WordNet
(Fellbaum, 1998) thesaurus, also provided as input.
The regularization is user definable by setting the
synonym altering probability (p1) and the masking
probability (p2). We observed that high values for
p1 and p2 decrease clean performances. Therefore,
we used and recommend p1 = 0.25 and p2 = 0.1.
In Section 3.6, we present a comparative study for
the effect of changing p1. The corresponding pseu-
docode can be reviewed in Algorithm 1.

Our code can be found in the following GitHub
repository: Link omitted for anonymity.

3 Results

Initially, we trained the candidate models on the
selected datasets and reported test accuracy, area-
under-ROC curve, and weighted F1 score. By
attacking the clean trained models with PWWS,
GA and BAE-R, we demonstrated the vulnerabil-
ity to adversarial attacks. Afterwards, we applied
the baseline defense strategies and WLADL, re-
trained the models from scratch and reported test
metrics again, to ensure that accuracies acquired in
clean training are maintained. Finally, the defended
models were attacked with the same approach to
monitor and compare how the defense algorithms
improve robustness. We also compare defense al-
gorithms with clean models in terms of accuracies
under attack and number of queries generated by
adversaries.

3.1 Clean Results

As expected, fine-tuned BERT outperforms BiL-
STM and CNN in terms of all metrics (except AU-
ROC on Yahoo! Answers). Generally, BiLSTM
is the second-best model, followed by CNN. The
clean classification metrics are included in Table 3.

3.2 Attacking Clean Models

We present attack results on the undefended models
on 200 test samples, reporting the model accuracy
for unperturbed samples, attacked samples, and the
average number of queries generated by the ad-
versaries in Table 2. The latter is a performance
indicator for the adversary (the lower, the better).



Table 2: Attack results on the undefended candidate models. Best scores for the defendant are highlighted.

Model Dataset Original Accuracy PWWS-Accuracy BAE-Accuracy GA-Accuracy PWWS-Query BAE-Query GA-Query

BiLSTM
IMDb

0.885 0.0 0.215 0.23 1394.645 410.355 3675.825
CNN 0.8 0.0 0.07 0.055 1208.145 388.270 6330.29
BERT 0.93 0.075 0.315 – 1514.015 417.75 –

BiLSTM
AG News

0.895 0.165 0.745 0.635 318.26 147.755 8834.555
CNN 0.885 0.255 0.675 0.62 310.34 208.645 3472.805
BERT 0.925 0.355 0.785 – 363.405 128.765 –

BiLSTM
Yahoo! Answers

0.655 0.07 0.365 0.27 432.115 225.045 17567.63
CNN 0.575 0.055 0.235 0.155 363.655 227.755 15240.99
BERT 0.665 0.235 0.485 – 538.26 306.345 –

Table 3: Clean test metrics for candidate models

Model Dataset Accuracy AU-ROC F1

BiLSTM
IMDb 0.8033 0.8885 0.8018

AG News 0.9022 0.9732 0.9023
Yahoo! Answers 0.7092 0.9328 0.7027

CNN
IMDb 0.8004 0.8843 0.8004

AG News 0.8896 0.9717 0.8895
Yahoo! Answers 0.6311 0.8986 0.6224

BERT
IMDb 0.9166 0.9711 0.9166

AG News 0.9172 0.9803 0.9170
Yahoo! Answers 0.7474 0.9274 0.7424

We have also observed that it is easier to find per-
turbation for longer documents. This explains the
better adversary performance on the IMDb dataset,
which comprises longer documents on average.

While BERT is the most robust model overall, it
also suffers from adversarial attacks, especially on
the IMDb dataset, as its test accuracy drops from
0.93 to 0.075 (PWWS) and to 0.315 (BAE-R). The
less sophisticated models, BiLSTM and CNN, are
even more vulnerable. We also observe that with
its low query number and better adversarial per-
formance, PWWS is the strongest attack. BAE-R
searches for fewer adversaries per sample while
still harming the models, leaving GA as the least
powerful attack.

3.3 Clean Results of Defended Models

To ensure performance maintenance, we measured
the test metrics after training the candidate models
using the defense strategies. The complete results
can be found in Table 4. In general, performance is
maintained, while WLADL and VAT defense show
minor performance fluctuations. However, LSTM
and CNN models experience performance drops
on SEM training. This confirms that reducing the
vocabulary in the embedding space decreases the
clean performance.

3.4 Attacking Defended Models

The defended models were attacked using PWWS,
BAE-R and GA. Additionally, to assess defense
strategies’ performances, we report average accu-
racy alterations to the models trained without any
defense strategy in Table 5.

Since VAT samples were generated through at-
tacking a clean trained BiLSTM using PWWS, we
observed that the best defense strategy for BiLSTM
was also VAT. We assume the hypothesized trans-
ferability issue of VAT to be true, as WLADL out-
performs VAT on CNN and BERT models. SEM’s
inferior robustness is expected, due to the limita-
tions imposed on the vocabulary. The embedding
matrix used for clean training is GloVe with di-
mension 50 (400k tokens in the vocabulary), but
for SEM, the vocabulary was restricted to 50k to-
kens per dataset. Using only the most frequent to-

Table 4: Clean Test Metrics for Candidate Models when
trained with selected defense strategies

Model/Defense Dataset Accuracy AU-ROC F1

BiLSTM – WLADL
IMDb 0.769 0.860 0.763

AG News 0.902 0.974 0.901
Yahoo! Answers 0.710 0.933 0.705

BiLSTM – VAT
IMDb 0.811 0.893 0.809

AG News 0.901 0.975 0.900
Yahoo! Answers 0.715 0.931 0.709

BiLSTM – SEM
IMDb 0.781 0.856 0.781

AG News 0.903 0.974 0.903
Yahoo! Answers 0.700 0.928 0.695

CNN – WLADL
IMDb 0.789 0.870 0.789

AG News 0.881 0.970 0.880
Yahoo! Answers 0.624 0.899 0.611

CNN – VAT
IMDb 0.814 0.895 0.813

AG News 0.888 0.971 0.887
Yahoo! Answers 0.633 0.902 0.625

CNN – SEM
IMDb 0.772 0.857 0.772

AG News 0.883 0.969 0.882
Yahoo! Answers 0.622 0.894 0.616

BERT – WLADL
IMDb 0.882 0.963 0.880

AG News 0.915 0.975 0.914
Yahoo! Answers 0.743 0.927 0.735

BERT – VAT
IMDb 0.921 0.974 0.921

AG News 0.915 0.977 0.914
Yahoo! Answers 0.746 0.928 0.740



Table 5: Adversarial Accuracies of different defense
strategies for models and datasets, averaged over attacks
and compared against clean training.

Model Dataset ∆Acc.
WLADL ∆Acc.

VAT ∆Acc.
SEM

BiLSTM
IMDb 0.027 0.053 -0.028

AG News 0.032 0.101 -0.020
Yahoo! Answers 0.055 0.033 -0.038

CNN
IMDb 0.119 0.018 0.020

AG News 0.014 0.038 -0.141
Yahoo! Answers 0.030 0.020 -0.070

BERT
IMDb 0.338 0.047 –

AG News 0.063 0.057 –
Yahoo! Answers -0.006 -0.052 –

kens leaves SEM more vulnerable to perturbations
with less common tokens. WLADL showed to be
most effective for CNN and BERT on the IMDb
dataset, improving the average attacked accuracies
by 0.12 and 0.34 respectively. Nonetheless, it is
fair to claim that the defense strategies (both the
selected baselines and WLADL) are weaker than
the attacks.

3.5 Comparing Adversary Query Counts

To analyze the relationship between the defense
mechanism and the difficulty to find adversarial
examples, we reported query counts generated by
adversaries for all possible combinations.

Table 6: Adversary Query Count changes with respect
to different defense strategies, averaged over datasets &
compared against clean training.

Model Attack ∆
Query
WLADL ∆

Query
VAT ∆

Query
SEM

BiLSTM
PWWS 62.52 33.70 -100.46

BAE 24.22 29.20 -11.68

CNN
PWWS -1.26 6.21 -100.51

BAE -17.57 -4.59 -122.89

BERT
PWWS 150.77 19.04 –

BAE 49.20 10.40 –

The averaged results in Table 6 are affirmative
to the ones observed individually. An increase
in query counts implies that searching further for
perturbations is necessary to fool the classifiers,
which is enforced by the defense. Again WLADL
and VAT show similar statistics and perform mostly
better than clean training, whereas attacking SEM
proved less difficult regarding the change in query
counts. BERT benefits the most from WLADL as
adversaries have to search more on average.

3.6 Effect of Synonym Altering Probability
To better comprehend how altering the Synonym
Altering Probability (p1) effects defense perfor-
mance, we trained the CNN with WLADL select-
ing p1 ∈ {0.2, 0.4, 0.6, 0.8} while controlling for
other hyperparameters using the AG News dataset,
and attacked them using PWWS. The results are
presented in Table 7.

Table 7: Effect of changing WLADL Synonym Altering
Probability on CNN, using AG News dataset, attacked
by PWWS.

p1 Acc. PWWS-Acc. Def. Suc. Avg. Query

0.2 0.849 0.234 0.275 262.68
0.4 0.843 0.236 0.279 258.11
0.6 0.846 0.23 0.272 260.26
0.8 0.845 0.214 0.253 255.75

Diverse values for p1 do not impact the un-
perturbed accuracy. However, when p1 > 0.4,
the perturbed accuracy drops, indicating that over-
regularization also decreases the defense success.

4 Discussion

In this paper, we aimed to build a transferable and
computationally efficient defense strategy against
word-level black-box adversarial attacks for doc-
ument classification. Existing strategies usually
fail to exhibit those two qualities simultaneously.
They focus on a certain class of models, augment-
ing the dataset and/or generating new embeddings,
making these defenses non-transferable. The main
strength of our defense strategy is applicability to
any model/dataset without pretraining or compu-
tational burden, and ease of application as a side
benefit. It is inherently synchronous to the training
pipeline, avoiding any offline procedures like the
existing methods.

Future work may include adapting WLADL’s
parameters dynamically during runtime, consider-
ing the length of the document and other variables,
instead of being static inputs. The IMDb dataset,
in particular, is characterized by longer documents
than AG News and Yahoo! Answers. Thus, it could
improve the poor performance against PWWS ob-
served for this dataset with the CNN and BiLSTM
models. Furthermore, we believe that a combina-
tion of VAT with WLADL where adversarial sam-
ples are not altered can be the most robust and the
simplest choice to apply for document classifica-
tion tasks.
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A Algorithmic Pseudo-codes

Here, we give the pseudocode for the Synonym
Encoding Method (Wang et al., 2021b) as we used
it in our implementation.

A.1 Synonym Encoding Method

SEM modifies the word embeddings. It reduces
an existing embedding matrix by mapping similar
words to the most used one. Similarity is mea-
sured using the Euclidean distance in the embed-
ding space. The pseudocode can be observed in
Algorithm 2.

In our benchmarks, we followed the authors and
used δ = 3.1 and k = 10. The new embedding
matrices were generated using the most frequent
50k tokens of each dataset.

B Experimental Setup

We wrote our code in Python using the well-known
Deep Learning framework PyTorch (Paszke et al.,
2019). Attacking was done using the open-source
library Text-Attack (Morris et al., 2020) which al-
ready provides recipes for the attacks.

B.1 Hyper-Parameters

The BiLSTM model we used consists of 64 hid-
den units with one bidirectional layer. The CNN
was built from three blocks of 2D convolutions
with kernel dimensions and filters [(2,50), (3,50),
(4,50)], [3,5,7] respectively with 0.2 dropout. Both
were trained using Adam (Kingma and Ba, 2015)
for five epochs and default optimizer settings as
given by PyTorch. For BERT, we fine-tuned the
last two stacks of BERT-Base (see (Devlin et al.,
2019)) with AdamW (decoupled weight decay ver-
sion of Adam (Loshchilov and Hutter, 2019)) for
three epochs. Here, the learning rate was set to

Algorithm 2: Synonym Encoding Algo-
rithm (Wang et al., 2021b)
Inputs: W: dictionary of words
n: size of W
δ: distance for synonyms
k: maximal number of synonyms for each
word
Output: E: new embedding matrix

1 E = {w1 : NONE, . . . , wn : NONE}
2 Sort the dictionary W by word frequency
3 for each word wi ∈W do
4 if E[wi] = NONE then
5 if ∃ŵj

i ∈ Syn(wi, δ, k), E[ŵj
i ] ̸=

NONE then
6 ŵ∗

i =
closest synonym to wi|ŵ∗

i ∈
Syn(wi, δ, k), E[ŵ∗

i ] ̸=
NONE E[wi] = E[ŵ∗

i ]

7 else
8 E[wi] = wi

9 for each word ŵj
i ∈ Syn(wi, δ, k)

do
10 if E[ŵj

i ] = NONE then
11 E[ŵj

i ] = E[wi]

12 return E

3 · 10−5 and the biases were not corrected, while
every other parameter was kept as default.

C Generating Adversarial Examples for
VAT

For vanilla adversarial training, we augment the
datasets using adversarial examples generated us-
ing a BiLSTM that was attacked by PWWS. For
the IMDb and AG News datasets, we generated
approximately 10% samples of the whole dataset,
while for Yahoo! Answers as many as we could in
24 hours because of the computational burden. The
amount of samples that were generated and how
long it took, can be observed in Table 8.

Table 8: Augmented Adversarial Examples and their
computational duration using PWWS and BiLSTM

Dataset Duration Samples Generated Fraction of Training Set

IMDb 23:15h 2211 8.84 %
AG News 09:35h 12107 10.01 %

Yahoo! Answers 24:00h 13687 0.98 %

For examples of concrete adversarial samples

https://ojs.aaai.org/index.php/AAAI/article/view/17648
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/N19-1131


that were generated, we refer the reader to Table 1.

D Attacking Defended Models

Following the complete pipeline in the main
manuscript, we generated query and accuracy re-
sults for every possible defense, model, dataset,
attack combination. The results can be seen in
Table 9. The bolded ones are column-wise best
results with respect to all defense strategies (the
higher, the better).
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